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Abstract — A previous paper by the author (Dobyns, 1993) on this topic
mistakenly fails to account for nonindependence in certain test measures,
leading to exaggerated conclusions. An analysis that avoids this problem
produces weaker statistical evidence, although the qualitative conclusions of
the earlier analysis are sustained.1

I. Background
A private communication from Jessica Utts called my attention to a difficulty
in my previous article on the selection model for remote REG experiments
(Dobyns, 1993). The problem appears on p. 265, immediately following for-
mula (6): "The aggregate likelihood of the hypothesis over all three intentions
may be calculated by repeating the individual likelihood calculation for each
intention..." Unfortunately, while the Bernoulli formula used in eqs. (5) and
(6) correctly accounts for the constraint equations governing populations and
probabilities within an intention, it fails to account for the nonindependence
induced by the further constraint conditions (see Section III below) operating
between intentions. The alternative formulation discussed later in the same
paragraph fails for the same reason; while the roles have been switched, the
formula is still correcting for one set of constraints and ignoring the other.
Since the component likelihoods do not derive from independent events, the
aggregate likelihood formed by multiplying them is in error.

The conclusion might be salvaged by deriving a correction factor for the ef-
fects of nonindependence, but with the raw data readily available, it seems
more productive to reformulate the analysis in such a way as to avoid the non-
independence problem entirely.

II. A Brief Reprise: Selection and Influence Models
For the current article to stand alone, a brief discussion of terms and experi-

mental background seems necessary. The experimental database considered
comes from remote experiments using a Random Event Generator (REG), a

1 I am indebted to Jessica Utts for her detection and communication of the error in the earlier analysis.
The Engineering Anomalies Research program is supported in part by grants from the Fetzer Institute,
Laurance S. Rockefeller, and Helix Investments.
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device which records digitized random output from a noise diode or other
source. In these remote experiments, operators distant2 from the device at-
tempt to alter the machine's mean output level. These experiments are tripo-
lar; each remote session comprises three consecutive runs started at twenty-
minute intervals, with the operator attempting to increase the mean output
level in one of the runs (H intention), decrease it in another (L intention), and
leave it unaltered in a third (B intention). Each of these runs consists of 2 x l05

binary random samples collected as 1000 sums of 200 bits each. Because of
the lack of contact between operator and device, it can plausibly be proposed
that the observed experimental effect derives not from an actual change in the
output, but from judicious choice of intentional labeling to correspond with
the random outputs of an undisturbed device generating tripolar sets. This type
of effect could constitute a genuine anomaly, in which operators by some as-
yet-unknown and probably unconscious means acquire information about the
run outcomes and choose their intentions to suit, or it could represent a break-
down of the experimental controls in which operators somehow learned of the
run outcomes before reporting their intentions. Regardless of the details, any
model in which the effect is achieved by selecting the intention ordering to fit
otherwise unmodified output can be considered a selection model. In contrast,
an influence model assumes that any observed effects are due to actual differ-
ences in the machine's performance under different intentional conditions. It
should be noted that this analysis does not, strictly speaking, address the ques-
tion of whether there is in fact an effect; it aims at distinguishing the origin and
nature of an effect if one is present. The reality or otherwise of the effect has
been discussed elsewhere (Dunne and Jahn, 1992).

III. Redefined Rank Frequency
The 1993 paper uses the term rank frequency to refer to the frequency with

which a given intention possesses a given ordinal rank within its tripolar set.
Since each run within a tripolar set has a definite rank and must also be as-
signed a definite intention, there are nine rank frequencies, which can most in-
telligibly be arrayed in a 3 x 3 matrix of intentions versus ordinal ranks. The
dual constraints of one of each rank, and one of each intention, in each tripolar
set, manifest as a set of five independent constraint equations on these nine
matrix elements. (Actually, there are six constraining conditions, one on each
row and column of the matrix; however, any one of the six equations may be
expressed as a linear combination of the other five, and thus eliminated.)

The nonindependence problem can be avoided by formulating the problem
in terms of tripolar sets, rather than individual runs. There are just six distinct
ways in which three nonidentical run outcomes can be assigned to the three in-
tentions under the protocol constraint that each tripolar set contains exactly

2Distant is here taken to mean that the operator-device separation is at least on the order of a mile and
frequently ranges up to hundreds or thousands of miles. Further details of the remote experiments can be
found in Dunne and Jahn, 1992.
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one instance of each intention. If we consider the frequency with which tripo-
lar sets appear in each of these possible configurations, we are clearly examin-
ing a single set of six exhaustive and mutually exclusive alternatives, rather
than three correlated sets of three such alternatives; the nonindependence
problem that corrupted the previous analysis then becomes irrelevant. The re-
mainder of this analysis shall be cast in terms of these frequencies of the six
possible tripolar rankings. (Note that these "rank frequencies" are thus de-
fined differently than in the 1993 paper.)

Where individual identification is necessary, rank frequencies will be la-
beled by the intentional subscripts assigned to the highest, middle, and lowest
run of the set, respectively. Thus pHBL refers to the frequency of appearance of
the "correct" tripolar labeling in which the highest run is assigned to the high
intention and the lowest to the low intention; pBLH refers to the frequency of
tripolar sets in which the highest run is labeled a baseline, the middle run a low,
and the lowest run a high; and so forth. The key to the analysis is that influence
and selection models predict different functional relationships between the
rank frequencies and the distribution statistics of the observed data.

IV. Observational Database
As noted in the 1993 paper, the database comprises 494 tripolar sets. Four of

these sets contain ties between intentions, a consequence of the discrete nature
of the experiment but not one that can readily be dealt with in this continuous
formalism. They may be discarded without appreciably altering the statistics.
The overall bit-level deviations from expectation in the remaining 490 sets
show the following means and standard deviations:

Intention

H
B
L

TABLE 1
Bit Deviations

Mean

32.81
5.578
2.102

Std Dev

225.5
212.5
217.6

The theoretically expected distribution for these bit deviations is normal with a
mean µ = 0 and standard deviation s = 223.6.

However, to conduct an analysis against a selection model one must normal-
ize the data, not by their theoretical distribution, but by the empirical mean
and standard deviation of the pooled data themselves. This is necessary to
avoid improper prejudice against the selection model. This model assumes the
process is applied to µ = 0, s = 1 normal data, and its predictions necessarily
have the property that if the three intentions are combined into a single collec-
tive pool, the aggregate will have µ = 0, s = 1. The influence model, on the
other hand, is indifferent to a uniform linear transformation applied to all of
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the data. Another way of understanding this consideration is to say that the se-
lection model, at least as regards means and variances, predicts the relative
status of the intentions within the aggregate database, rather than their ab-
solute status under the machine's theoretical output.

So, when the raw data are normalized to have an overall mean of 0 and stan-
dard deviation of 1 across all three intentions, the results are:

TABLE 2
Normalized Statistics

Intention

H
B
L

Mean

0.0883
-0.0362
-0.0521

Std Dev

1.0304
0.9707
0.9941

Skew

-0.1339
0.1005
-0.1803

Krt.
-0.0697
0.1481

-0.4903

Table 2 has included the higher moments that will be used in statistical evalua-
tions. These have the same values for the non-normalized data, since they are
unaffected by linear transformations. The observed rank frequencies are:

TABLE 3
Rank Frequencies

Rank Order N (out of 490) Observed p

HBL 92 0.188
HLB 88 0.180
BHL 80 0.163
BLH 79 0.161
LHB 87 0.178
LBH 64 0.131

The quoted values for p have a one-s statistical uncertainty of ±0.017, due to
the number of observations.

V. Inferences from Models
The influence model treats the distribution data in Table 2 as primary; the

expected rank frequencies can be calculated from these distribution statistics
through a straightforward if tedious process of numerical integration. The se-
lection model, on the other hand, treats the rank frequencies of Table 3 as pri-
mary, and allows distribution statistics to be calculated from them. It is not,
however, immediately obvious how one may interpret the results of such cal-
culations. In the one case the prediction generates a set of distribution statistics
to be compared with the observation; in the other, a set of rank frequencies is
predicted. It is not clear how one may construct a single goodness-of-fit para-
meter that can be applied in both cases to compare the relative merits of the
two hypotheses. The previous work avoided this problem by inverting the
functional dependence of the selection model calculations (the integrals in-
volved in the influence model are not readily invertible), allowing a calculation
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from distribution statistics to rank frequencies for both models. This allowed a
direct comparison of rank frequency predictions between the two models. Un-
fortunately, the redefined rank frequencies in Table 3 are not amenable to such
functional inversion for the selection model; the relevant equations are nonlin-
ear in the rank frequencies, and admit of multiple solutions for a given set of
distribution statistics.

In the absence of a clear theoretical model for a goodness-of-fit comparison,
it is nonetheless possible to determine the goodness of fit for each model em-
pirically via a Monte Carlo procedure. This not only establishes each model's
ideal predictions for the input data, but also directly determines the distribu-
tion of variations in the predictions, making it possible to test each model's fit
to the observed data without the need for a functional inversion to create com-
parable predictions. As an added bonus, using the actual data in the Monte
Carlo process assures that the real characteristics of the data are being account-
ed for to exactly the degree that they are statistically established, without any
risk that simplifying assumptions in a theoretical model3 are distorting the pre-
dictions.

VI. Monte Carlo Algorithms

Selection by Monte Carlo
The selection model assumes that the data are the result of a selection proce-

dure applied to the extant tripolar sets. A certain proportion of them are cor-
rectly identified as to their ordinal rank, with the highest run labeled H, the
lowest labeled L, and the middle run labeled B. Likewise varying proportions
of the tripolar sets, as detailed in Table 3, are "mislabeled" to various degrees
of inaccuracy.

The question we ask of the selection model may be expressed thus: Given
the 490 tripolar sets made available for the selection process, and given also
the rank frequencies of Table 3 as the definition of the efficiency of the selec-
tion process, how likely are the observed statistics of the three intentional dis-
tributions? The question, thus phrased, is in itself nearly a specification of the
desired Monte Carlo algorithm. First, we internally sort the tripolar sets so
that, for each set, we can identify its highest, lowest, and midmost element. We
then randomly choose 92 of the 490 to receive the "correct" HBL labeling; we
assign the HLB labeling (highest run labeled H and lowest labeled B) to 88 ran-
domly selected sets out of the remaining 398; and so forth. Once the sets have
been distributed among the six possible intentional labelings according to the
population figures in Table 3, we find which runs have been assigned to each
of the three intentions and calculate intentional distribution statistics accord-
ingly. Finally, we repeat the whole process many times, and see how the actual
twelve-element matrix (mean, standard deviation, skew, and kurtosis for each

3As, for example, the assumption of normality in an influence model integration.
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of three intentions) of intentional statistics compares to the distribution of
many such matrices calculated in the Monte Carlo process.

Influence by Monte Carlo
For the influence model, the question is: How likely is the observed set of

rank frequencies, given the observed statistics of high, low, and baseline runs?
Here, the procedure is to preserve the intentional identity of each run and to
scramble the tripolar sets. A new group of 490 tripolar sets is created by ran-
domly drawing (without replacement) one each from the high, baseline, and
low datasets, until the data are exhausted. The rank frequencies of this re-
arranged dataset are then calculated and recorded. This process is then iterated
to build up an empirical distribution of rank frequency predictions.

VII. Goodness of Fit: The Empirical Distance Parameter
To compare the single set of observational values with the distributions gen-

erated by the Monte Carlo procedure, it is simplest to regard the set of numbers
as defining a single point in a multidimensional space. For the selection
model, which generates twelve statistical measures, the parameter space is
twelve-dimensional;4 for the influence model, which produces six rank fre-
quency predictions, the space is six-dimensional. Once we start thinking in
terms of a spatial representation of the data format, however multidimension-
al, it becomes quite natural to think of summarizing the many differences be-
tween (say) any two Monte Carlo outcomes by the distance between two
points in these many-dimensioned spaces.

This parameter distance presents the ultimate key to quantifying the ques-
tion of whether the observed values are "like" or "unlike" the predictions
emerging from the Monte Carlo calculation. For each model, we calculate the
centerpoint of the distribution of Monte Carlo outcomes by taking the mean
value of each "coordinate." We can then calculate the distribution of parame-
ter distances from all of the individual Monte Carlo outcomes to this center-
point, and compare this distribution to the distance between the Monte Carlo
centerpoint and the observed data. Figure 1 demonstrates the application of
this concept in a readily visualizable parameter space of 2 dimensions. The
scatterplot shows 500 points generated with a Gaussian radial density

p(x,y) oc e-r'12 = e-(x2+y2)/2.

(Note that this is equivalent to independent variations on both the x and y

4Actually, the two constraints on mean and variance imposed by the selection model confine the
points to a ten-dimensional hypersurface in the twelve-dimensional space. This is automatically handled
correctly by the empirical treatment, since the normalized observational data obey the same constraint.
A similar dimensional reduction, caused by the constraint Ep = 1, applies to the rank frequency calcula-
tion; again, the use of an empirical distribution obeying the same constraint instead of a theoretical cal-
culation dependent on the number of dimensions used automatically compensates for this problem with-
out any need for explicitly taking it into account.
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Fig. 1. The distance problem in two dimensions.

axes). The center of the distribution is marked with a filled circle; a few radial
lines from the centerpoint to some of the individual points are shown. Also
shown is the radial line to an arbitrarily chosen point x = 2, y = -0.5 marked by
a diamond. If the statistics of the scattered points were not known a priori we
could construct a statistical test for the likelihood that the diamond is an ordi-
nary member of the distribution by comparing its radial distance from the col-
lective centerpoint with the distribution of all other radial distances such as the
examples shown.

Axis Normalization
An extra complication appears in the Monte Carlo distribution of selection-

model statistics, since the various statistical measures calculated are not equal-
ly stable. This requires that the distance measure be normalized, as shown in
Figure 2.

This figure shows two dimensions from an actual sequence of 500 Monte
Carlo selection model runs, specifically plotting the baseline skew against the
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baseline standard deviation. Again, the individual runs are plotted by points
and the center of the distribution is shown by a filled circle. Figure 2a shows
the distribution in absolute units; it is evident that the skew is intrinsically
more variable than the standard deviation, as expected from first principles.
The density contours are elliptical rather than circular in these two dimen-
sions; the dotted ellipse is an approximate contour. The solid circle, with two
points marked, shows why the distance calculation needs to normalized for
such cases. Although all points on the circle clearly share the same distance r
from the center of the distribution, it is obvious that the point marked by a
filled diamond is fairly typical of the distribution, while the point marked by a
circle and crosshairs is extremely atypical. Since both typical and extreme
points can share a common radius, the non-normalized radius is clearly not an
adequate representation of how well a given point fits the distribution. For il-
lustration, the open circle connected to the distribution centerpoint by a radial
line shows the values of these two parameters in the observed data.

Figure 2b shows the effect of normalizing, in this case by amplifying all lat-
eral distances by a suitably chosen scale factor. (The same scale is used on the
x-axis for display purposes, and no longer reports the actual standard deviation
value of the plotted runs.) We can see that the density contours are now ap-
proximately circular and that two points at the same distance r are in compara-
ble regions of the distribution, regardless of their angular position. The rescal-
ing has shifted the position of the observed data point as well as of the
individual Monte Carlo outcomes; its renormalized radius is now suitable for
comparison with the renormalized radii of the individual Monte Carlo out-
comes as discussed with the example of Figure 1.

VIII. Conclusions from Monte Carlo
To evaluate the two models, 105 iterations of Monte Carlo were run for each.

The distances of individual Monte Carlo runs from the aggregate population
centerpoints were calculated and binned to establish the probability density of
the distance parameter for each model. The results are shown graphically in
Figure 3. The raw bin populations are shown by the scatterplot of crosses; a
smoothed version is illustrated by a continuous line. The position of the actual
observed data on the distance scale is shown by a labeled vertical spike. It is
quite evident that the actual data fall moderately far out on the tail of the se-
lection model's distribution of predictions (top graph in Figure 3), while they
are quite close to the peak of the distribution of predictions from the influence
model (lower graph in Figure 3). The tail-area p-value can be calculated quite
directly simply by counting the number of runs in the upper tail for each
model, that is, the fraction of the Monte Carlo runs that are more unlike the av-
erage prediction than the observation. For the selection model, this p-value is
0.0296 ± 0.0005 (the uncertainty quoted is the statistical one-s error in estab-
lishing a binomial probability from 105 observations). For the influence
model, on the other hand, p = 0.347 ± 0.002. Thus, by a standard p = 0.05 sig-
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Fig. 2. Why normalization is needed.

nificance criterion, the predictions of the selection model can be distinguished
from the structure of the observed data, whereas the predictions of the influ-
ence model cannot. Or, to express the consequences of the Monte Carlo analy-
sis more directly: When influence is assumed, and the existing data distribu-
tions are used to construct rank frequencies, the result is statistically
indistinguishable from the actual data. In contrast, when selection is assumed,
and the existing rank frequencies and tripolar sets are used to construct data
distributions, the result is statistically distinct from the actual data structure.
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IX. Theoretical Concerns

The Nelson Problem
R. D. Nelson, in private communication, outlined a possibility for the selec-

tion process that would increase the difficulty of data interpretation by at least
an order of magnitude.

The current analysis presumes that the hypothetical selection by the opera-
tor is purely qualitative. It is assumed, for that model, that the operator has
some erratic ability to discern which of the three run means is highest (or low-
est, etc.). What if the efficacy of such an ability is conditioned by the distinct-
ness of the runs? To draw a visual analogy, it is clear that humans can distin-
guish two different primary colors under much more adverse conditions than
two lightly contrasting shades of beige. It does not seem unreasonable a priori
that if the human participants have some ability to distinguish and sort among
the experimental runs, they could more readily distinguish a (normalized) split
of ± 3 between two intentions than one of ± 0.001.

If the rank frequencies are data-dependent, the problem of predicting the ex-
pected selection distributions from them becomes very much harder. For one
thing, the observed rank frequencies are already somewhat uncertain, simply
due to the limited number of observations available to characterize them. If
the additional dimension of variation with regard to run mean is added, we
have no hope of being able to characterize their variation on the basis of the
data, and would have to assume a model for such variation. Furthermore, even
given a model, the calculation of expected statistics from such variable rank
frequencies becomes quite intractable.

Fortunately, the proposition of data-dependent rank frequencies is
amenable to a direct test, or rather, to several. It is necessary first to quantify
the degree of accuracy an operator displays in making a particular assignment
of intentions to a tripolar set. Clearly, there is some sense in which the "HBL"
assignment is "completely right" and the backwards "LBH" assignment is
"completely wrong," but how should intermediate assignment orders be
ranked? There are three binary decisions that can be made in evaluating the
relative rankings of a tripolar set: Is the H run higher than the B? Is the B run
higher than the L? Is the H run higher than the L? (It should be noted that these
three decisions are not independent, but this is irrelevant to the analysis.) If we
define an accuracy index by the number of these conditions that are satisfied
by a given set, we find that a set in the HBL order has an accuracy index of 3,
while a set in the LBH order has an index of 0. For the other four orderings,
both HLB and BHL have an index of 2, while both BLH and LHB have an
index of 1. Since, in each case, there is no obvious qualitative way in which
one of the two rankings with an equal index is "better" or "more accurate" than
the other, this index seems a satisfactory quantitative measure of the some-
what vague notion of accuracy in judgement.

The other measure of interest is the span of the tripolar set, the interval be-
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Fig. 3. Fit of theory to observation, both models.
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Fig. 4. Accuracy as a function of span.

tween its highest and lowest elements. The data-dependent selection hypothe-
sis posits that accuracy should be greatest for those sets with the widest span.
Figure 4 illustrates that this is not the case. The icons with error bars show the
average accuracy index and associated standard error, as a function of the span
of the tripolar set. These averages were calculated by a binning process; the
first point represents the average accuracy for all sets with a span less than 0.5,
and so forth. The rightmost bin, nominally [3.5,4.0], includes a contribution
from two sets with span values greater than 4. This inclusion does not appre-
ciably change its statistics. Two regression lines with their 95% confidence hy-
perbolas are shown: the solid line is a weighted regression to the averaged
points, the dotted line is the regression to the actual 490 span and accuracy val-
ues. This latter may be considered more accurate, since some information is in-
evitably lost through the binning process; binning was conducted simply be-
cause the scatterplot of the 490 accuracy values (not shown) is difficult and
uninformative to judge by eye.

The conclusion of the regressions is clear: while some slope is visible in the
regression lines, the confidence hyperbolas include lines of the opposite slope,
and in consequence the slope of the regression line is not statistically distin-
guishable from zero. Looking at the binwise averages we can note some mod-
est suggestion, not of a trend, but of some kind of distinction: the data appear
to consist of two groups, an extreme group of very large and small spans for
which accuracy is poor, and a range of intermediate spans for which accuracy
is somewhat better. Resolving the reality of this apparent structure must await
the collection of more data, preferably in independent replications. For the
purposes of the current analysis, it is sufficient to note that any span-depen-
dence of the rank frequencies is too weak to be detectable in the experimental
database. We may therefore resolve the Nelson problem by noting that the as-
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sumption of constant selection efficiency used in the foregoing analysis is an
adequate approximation for treating the given database.

Timing Selection
The analysis above has addressed a selection model in which intentions are

assigned to suit the respective outcomes of a tripolar set, or at least the proba-
bility of a match is increased by some anomalous knowledge on the part of the
operator. The remote protocol used at PEAR does, however, allow one (and
only one) other volitional choice by the operator, namely the time at which
data collection is to start. This allows another potential venue in which a selec-
tion process could operate: rather than choosing the intentional order to fit the
outcome, an operator aware of the machine's future behavior could choose to
start collecting data at a moment when its variations would correspond to a
chosen intentional order.

The operator has only a single choice of timing for each tripolar set; the sec-
ond and third runs are started at twenty-minute intervals after the first. This
means that, as with intentional selection, timing selection is a process that
must be analyzed in terms of entire tripolar sets rather than individual runs.

Clearly, timing selection is potentially far more powerful than intentional
selection. A perfectly efficient intentional selection process is limited in its
abilities. The best it can do, by labeling each set optimally, is to put the high in-
tention in the distribution generated by taking the highest of three independent
standard normal deviates, and the low intention in the symmetric lowest-of-
three distribution. In contrast, a perfectly efficient timing selector is limited
only by the number of possible outcomes available for choice. Given a suffi-
ciently broad "menu" of alternatives, a timing selector with perfect discrimi-
nation could create any output distribution desired for the three intentional cat-
egories.

However, with a single constraint, timing selection can be analyzed with the
same tools used above — in fact, it makes exactly the same predictions as in-
tentional selection, and therefore the same conclusions already reached will
apply. The constraint is simply that an operator who is using timing selection
to favor desirable results will tend only to choose a moment that produces re-
sults in line with the intentions, without further optimizing the outcome. In
other words, if one assumes that an operator searching (perhaps subconscious-
ly) for an auspicious time to begin the series is satisfied by finding some mo-
ment that gives mean shifts in the declared directions, rather than searching
among a broad range of possibilities to find the very best, timing selection pre-
dicts the same relationships between rank frequencies and distribution para-
meters as intentional selection.

The reason for this should be clear. Consider a constrained timing selection
process that is always successful at choosing the HBL order. By the constraint
assumption, its outputs are unbiased selections from the distribution of tripo-
lar sets that happen to be in the correct order. The output of the process, over
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many samples, is equivalent to the algorithm: "Generate a tripolar set with at-
tached intention labels. If it is in the correct order, keep it; if not, discard and
try again." An intentional selection process that always succeeds is equivalent
to the algorithm: "Generate a tripolar set. Label the lowest L, the highest H,
and the third B." But both of these procedures will create exactly the same dis-
tributions. In each case the probability density of H runs is given (up to an
overall normalization) by the joint probability that a normal deviate will take
on a given value while two other independent normal deviates take on lower
values. The probability distributions for L and B run values are likewise identi-
cal in both processes.

The constraint on timing selection may seem arbitrary, but in fact it is highly
plausible for the dataset under consideration. It is obvious that the operators
are not functioning anywhere near the regime of perfect efficiency. Table 3
shows that, if a selection process is operating, it achieves only a modest in-
crease in the probability of correctly labeled sets. If this is the outcome of a
timing selection process, it seems that operators are frequently wrong in their
judgement that a given initiation time will produce results in the desired direc-
tion. Is it credible that they are managing to optimize their choices within the
distribution of correctly-labeled sets, given that they are only marginally suc-
cessful at identifying such sets at all? The solution of the Nelson problem dis-
cussed in the preceding section also supports the notion that operators do not
seem to be optimizing their successful choices.

In short, the limited efficiency of rank frequency selection seen in Table 3,
and the negative outcome of the Nelson test, strongly indicate that any timing
selection process present must be operating in a regime where its effects are in-
distinguishable from intention-based selection. If this is so, then timing selec-
tion under these circumstances makes the same predictions as an intention se-
lection model, and the p ~ 0.03 rejection seen above applies to it as well.
Timing selection together with intention selection spans the possible range of
selection models for this experiment, so the result can with considerable confi-
dence be applied to all selection models for this particular database. A more
generalized timing selection model is not refuted, but must at a minimum in-
clude some explanation for the oddity that operators who are only modestly
successful at choosing starting times that make the H run high and the L run
low nonetheless are choosing their moments so cleverly as to spuriously
mimic the statistical features of an influence model.

X. Conclusions
We arrive, finally, at the conclusion that the selection hypothesis gives a

poor fit to the data structure, while the influence hypothesis gives about as
good a fit as can be expected. The result is statistically weaker than that report-
ed in 1993: p ~ 0.03 instead of p = 0.0095 as in the previous analysis. Since it is
known that the confound in the previous analysis was an inflation of its signif-
icance, it should not be surprising that this is the case.
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We therefore may safely continue to conclude, albeit with less force, that the
observed data do not support a run-based selection process for the apparent re-
mote REG anomaly. Aside from its implications for theoretical modeling, this
also reinforces the validity of the experiment, since failure of the experimental
controls would manifest as just such a run-based selection effect.
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