
Notes on Distance Dependence of Pair Correlation Statistics
We use two correlation statistics:  
pair-products of trial z-scores: {z i }  

pair-products of the "zero-mean trial variances": { z i
2-1 }

In all cases we look at sums of the products as
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where (i,j) label RNGs for one second of network output and t labels time in seconds.

ppnet and ppcov are both zero-mean statistics with positive skewness and bounded variances of
NT  and 4 NT , respectively, where NT  is the total number of products in the sums. By the central
limit theorem, they approach gaussian distributions for NT p 1. This condition always holds for
the cases we consider.  In order to assess deviations, D, of the correlation sums, Z-scores can
be formed as 

ZNet = DNet � NT

ZCov = DCov � 4 NT .

These results are valid for standard normal trials, {z i }. The GCP data are derived from binomial
B[200,1/2] generators, which alters the variance of ppcov slightly. The variance of ppcov  for
GCP data is 3.96 NT , and 

ZCov
gcp

= DCov � 3.96 NT .

Working  directly  with  pair-products  allows  us  to  investigate  if  distance  is  implicated  in  the
measured experimental correlations. In effect, the correlation strengths

pp = z i z j  

can be written as 

pp = s(r i , r j )

where the vectors rÓ denote the network node positions. An obvious formulation is 

pp = sId i j )

where d i j  is the geometric distance between RNGs i and j. In this case the analysis problem is to
determine the functional form of s(d). Intuition suggests a monotonic decrease of s versus d. This
may be modeled analytically as linear or gaussian fall-offs, for example. Other examples can be
cited, but more complicated models are probably not warranted due to the noisiness of the data.
The null  hypothesis for distance, s(d) = constant, is of primary importance, since it implies that
RNG networks do not require geographical deployment in order to measure an effect. The princi-
pal aim of the distance analysis is to establish a confidence interval against a null distance effect.

There are many choices for modeling a distance effect.  If a distance effect obtains, the data may
be able to distiguish between some of these. Two possibilities are worth mention:

s = s(r i j),

where r i j  = r i  - r j . In this case the distance enters only through the RNG-RNG separation and is
independent of  where the RNGs are located on the earth.  This could describe a situation of
entanglement of some sort, for which correlations depend only on the proximity of RNGs. The
global consciousness could then be imagined as a time-dependent scalar field, with constant
spatial amplitude. Entanglement would imply that data correlations are not associated with super-
posed deviations of  individual  RNGs. The individual  RNGs loose their  identity,  as far  as the
correlations are concerned. In a sense, individual RNG deviations become complementary to
network correlations.

A second possibility is

s = s(r i , r j ; f(rsourceL).

The source distribution, fs, is a local "global consciousness" which effects the RNG behaviour in

some way. The network deviations become correlated because fshas a large spatial extent and
thus simultaneously effects many RNGs in the same way. The source could be associated with
an event's  locale,  the geographical  distribution of  populations effected by an event,  or  other
factors depending on how one wants to model global consciousness. In order for fsto produce a
distance effect, it needs extend over distances large enough to encompass many network RNGs,
but still decay significantly on the scale of the earth's diameter.

Other  approaches  may  involve  a  combination  of  these  possibilities.  One  could  also  image
"distance" measures which include psychological, historical or other factors.

In thinking about physical distance, it is important to remember that the distribution of pair dis-
tances varies over time and will depend on the details of the model as well. For example, the
figure below shows the distribution of distances for 68 RNGs for three different senarios: geomet-
ric RNG-RNG pair separations and the distance of RNG pair mid-points from locales in London
and Kinshasa. The pair separation distribution samples distances from 0 up to the earth diame-
ter, while the locale distributions are biased toward distances greater or lesser than the earth
radius. 
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The uncertainty in how to model distance will lead to a loss of power in statistical tests of a dis-

tance effect. The best we can do as a start is to assume a simple model sId i j ) where the dis-

tances d ij  are taken to be the geometric separation of RNG nodes. Tests based on this model
will be sensitive to both source and entanglement models, but will loose power to the extent that
the model is a poor match to the data.

Results for the test follow.

To begin we select a data set of 245 events which excludes events that are formally rejected,
collected during periods network instability, of durations longer that 1 day or less that 15 minutes,

or occur for a network with less than 17 online nodes. The data set contains 1.14 �1010 correla-

tion pair products. The average correlation strengths are 4.10 and 3.93 � 10-5,  for ppnet and
ppcov, respectively. These values yield Z-scores of 

ZNet = 4.38

ZCov
gcp

 = 2.10, 

in agreement with the Z-scores calculated directly from the netvar and covar statistics for these
data.
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in agreement with the Z-scores calculated directly from the netvar and covar statistics for these
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To study the distance effect, each pair-product is assigned a distance equivalent to the geomet-
ric separation of the RNG node locations. A preliminary test can be made by dividing the data
into equal sets of low and high distance and comparing the total correlation strengths. A distance
effect would appear as larger strength for the low distance set. Cumulative deviations for the two
statistics are shown below. The cumdevs sum the data in the chronological order of events. Note
the larger variance in the ppcov data.

50 000

100 000

150 000

200 000

250 000

300 000

Cumdev of ppnet before �after 7311km cutoff

4   DistanceNotes.nb



50 000

100 000

150 000

200 000

250 000

300 000

350 000

Cumdev of ppcov before �after 7311km cutoff

A mean difference test  for  the distance split  yields Z-scores of  1.87 and 0.55 for  ppnet  and
ppcov, respectively, and a combined score of Z = 1.71. This marginally significant evidence for a
diffuse distance effect in the event data.

An alternate approach is to perform a linear regression of the average correaltion strength at a
given distance. Regression fits should yield a negative slope, with the significance of the slope
parameter indicating the P-value for a distance effect. Regressions of the average correlation
strength on distance, weighted by the number of pair-products at each distance yield negative
slopes with P-values of 0.06 and 0.08 (ppnet, ppcov) for Z-scores of 1.55 and 1.39. The Stouffer
Z of these results is Z = 2.08 . Interestingly, the decay distances, given by the distances at which
the regressions decline to zero correlation strength are different for the two statistics. The regres-
sion intercepts are 16,800km and 12,000 for (ppnet, ppcov). Alternatively, the distances at which
the regressions decay to 1/2 the maximum correlation strength are 8400km and 6000km. 

As a check, a non-linear regression using a gaussian fall-off finds decay distances at 1/2 maxima
to be 8410km and 5240km, respectively, in reasonable agreement with the linear fits. The gaus-
sian fits  can be compared to  the full  cumdevs to  give a  sense of  the change in  correlation
strengths as distance increases.  In the following plots the correlation products are sorted by
distance and plotted as a cumulative deviation. The bold curve is the cumdev of the gaussian fit.
Note again that the ppcov has a larger variance, resulting in a noisier plot. Under the null hypothe-
sis, the cumdev plots approximate straight lines, with slopes proportional to the average correla-
tion strength. The decreasing slopes of the gaussian cumdevs signals the decline in correlation
strength with distance.
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Next we can examine the mean difference test Z-scores across all cutoffs and compare to the
gaussian models. The models reproduce the shape of the test Z-scores and somewhat overesti-
mate the magnitudes. The maxima of the model curves indicate cut-off regions where the differ-
ence test has the most power, if we assume the models reasonably fit the data. In this case a cut-
off around 6000km should be optimal for the ppnet statistic and 4000km for ppcov. Using the
experimental Z's from these regions, we estimate a Z of Å  1.6 for both statistics. The Stouffer Z
for the two is Z Å  2.25.
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The last part of the distance analysis looks at resampling of the mean difference tests...

DistanceNotes.nb   7


